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Diffusion-limited coalescenceA+ A=A, with a trap

Daniel ben-Avraharh
Physics Department, and Clarkson Institute for Statistical Physics (CISP), Clarkson University, Potsdam, New York 13699-5820
(Received 15 June 1998

We study diffusion-limited coalescenc&;+ A=A, in one dimension, and derive an exact solution for the
steady state in the presence of a trap. Without the trap, the system arrivesatilérium state that satisfies
detailed balance, and can therefore be analyzed by classical equilibrium methods. The trap introduces an
irreversible element, and the stationary state is no longer an equilibrium state. The exact solution is compared
to that of a reaction-diffusion equation—the habitual approximation method of choice. The reaction-diffusion
equation can also be obtained exactly in this case, making the present model particularly useful.
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. INTRODUCTION +A—A, takes placémmediatelyupon encounter of any two
o o S ) particles. Thus, together with hopping and birth, the system

Nonequilibrium kinetics of diffusion-limited reactions has modgels the diffusion-limited reaction proces- A=A.
been the subject of much recent interfdst6]. In contrast to An exact treatment of the problem is possible through the
equilibrium systems—which are best analyzed with standarghethod of interparticle distribution function$PDF). The
thermodynamics—or reaction-limited processes—whose kikey concept isE, ,(t)—the probability that sitesn,n
netics is well described by classical rate equatibh8l—  +1 . mare empty at timé. The probability that site is
there is no general approach to nonequilibrium, diffusion-ccupied is
limited reactions.

In this communication we study a diffusion-limited coa- Prolsiten is occupied=1—E,, ,,. )
lescence process in one dimensié: A=A, which can be ’

analyzedexactly[9-19. When a trap is introduced, the re- The event that sites throughm are empty(prob E,, ) con-
sulting steady state is a nonequilibrium state. We derive agisis of two cases: sit@+ 1 is also emptyprob.E, 1), O

exact description of this state and compare it to the predicy jg occupied. Thus the probability that siteshroughm are
tion from a reaction-diffusion equation—the standard aPempty, but sitem+1 is occupied, i€, n— Epmis. With

proximation method of choice. The pertinent reaction-yis and with a similar rule for when the particle is to the left
diffusion equation can too be solved exactly, making they e empty segmenbne can write down a rate equation

modhelduseful for the study of this popular approximation¢,, the evolution of the empty interval probabilities:
method.

The rest of this paper is organized as follows. In Sec. Il

! T : D
we present a lattice model of diffusion-limited reversible n’m=§z(En,m—1—En,m)—gz(En,m— Enm+1)
coalescence, along with the exact method of analysis; the
method of empty intervals, also known as the method of D
interparticle distribution functions. The stationary state in the - ;(En,m— En-1m+ g(Enﬁlm— Enm
presence of a trap is derived and analyzed in Sec. Ill. In Sec.
IV we compare the exact solution to that of a reaction- v
diffusion equation, and devise strategies to determine the ap- - %[(En,m— Enmtd)t(Enm—En-1m)]. (2

propriate rate coefficients. We conclude with a discussion

and open questions in Sec. V. Equation(2) is valid for m>n. The special case ah=n

yields the boundary condition
Il. REVERSIBLE COALESCENCE

Our model[9,10] is defined on a one-dimensional lattice Enn-1=1. )

of lattice spacinga. Each site is in one of two states: occu- o

pied by a particled, or empty. Particles hop randomly into 1he fact that theE, ,} represenprobabilities implies the
nearest neighbor sites, at rai¥a?. A particle may give additional condition tha&, ,=0. Finally, if the system is
birth to an additional particle, into a nearest neighbor site, afot émpty therg, ,—0 asn— —c« andm—.

ratev/2a (on either side of the partidelf hopping or birth N many applications, it is simpler to pass to the con-
occurs into a site that is already occupied, the target sitdnuum limit. We write x=na and y=ma, and replace
remains occupied. The last rule means that coalescetnce, Enm(t) With E(x,y;t). Lettinga—0, Eq.(2) becomes

ax  ay @

JE (az 32> U(o”E aE)
- . ,

—_— _J’_ —_ —_
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with the boundary conditions, E_1m=Eom, (13
E(x,x;t)=1, () which in the continuum limit becomes
E(x,y;1)=0, (6)
JE(X,y;1)
lim E(x,y;t)=0. @ —x | ~° (149
Yoo x=0

The concentration of particles is obtained using Egs. In addition, the boundary conditiofY) is now replaced by
and (3), and passing to the continuum limit:

limE(0y;t)=0. (15
(x0) JE(X,y;t) ® y—e
c(xt)y=————— .
N y=x The stationary solution to Ed4), confined to the wedge

(0=x=y), which satisfies the boundary conditio{®, (6),

It can also be showf,10] that the conditional joint prob- :
(9,10 JOIMt PTOD 14, and (15), is

ability for having particles ax andy but none in between, is

FPE(X,y:1) Esx,y)=e " ¥+ y(y—x)e” . (16)

P(Xy;t)=~— “oxay 9
Far away from the trap, as,y—, this converges to the

Given a particle ak, the probability that the next nearest equilibrium result of Eq(10). From Eq.(8), we obtain the

particle is aty, i.e., the IPDF, ip(x,y:t) = (1/c)P. stationary concentration profile:
= —e Y
Ill. STEADY STATE WITH A TRAP Cs(x)=y(1=e"™). 17
The steady state of E¢4), with the boundary conditions As expected, there is a depletion zone of size=12D/v
(5)—(7), whendE/at=0, is near the trap, and the concentration grows asymptotically to
Cog ASX— 00,
Eeq= e~ (W/2D)(y—x)_ (10 The IPDF between nearest particles is surprising. From

) I _ Egs.(9) and(16) we obtain the conditional joint probability
This corresponds to the equilibrium concentration of par-

ticles[using Eq.(8)] P«(X,y)=y%e Y(er—1). (18

v

Ceqzﬁzfy. (12) Dividing P¢(x,y) by c4(x) yields the “forward” IPDF—the

probability that given a particle atthe next nearest particle

o L . to its rightis aty:
Another trivial solution isE(x,y)=1; it represents a totally 9 y

empty system. But the solutiofil0) is stable, while the
vacuum state is not. In fact, when the initial state of the

system is a mixture of the two phasegx,t=0)=0 for X = The notation chosen here emphasizes the unexpected result
<0 andc(x,t=0)=ceq for x>0, say, then the stable phase a1 p, is translationally invariant. What is more, this Pois-
invades the unstable phase. The front between the tWwgynian IPDF is characteristic of particles equilibrium
phases propagates at a constant speed, similar to the cas&¥en there are no correlations between their various posi-
Fisher waveg20]. Here we wish to study another inhomo- tions. Indeed, exactly the same IPDF is obtained for the equi-
geneous situation, where there is a perfectly absorbing trap §gium state of Eq(10), without the trap.

the origin instead of the initial empty half-space. The trap 14 gptain the “backward” IPDF—the probability that

depletes its immediate neighborhood, but a nontrivial steadyiyen a particle ay the next nearest particte its leftis at a
state is expected as the depletion zone created by the trapdsiancez—we divide PL(X,y) by cy(y):

continually replenished by a stream of particles from the

ps(z)=ve" "%,  z=y-—x. (19

stable phase. APy
To derive the appropriate boundary condition, we turn q,(2)=y————. (20)
back to the discrete representation. In the presence of a per- 1-e 7
fect trap atn=0, Eq. (2) is then limited to 6<n<m. The
special equation fon=0 is The fact thatg,(z) is not translationally invariant comes as
no surprise, because of the trapat0. However,q,(2)
dEom D does not normalize properly. The reason for that is that there
ot :ﬁ(EOm*ﬁ Eom+1tE1m—3Eom) is a finite chance that there are no particles between the par-

ticle aty and the trap, i.e., the particle gtis the nearest
particle to the trap. The probability that this happens is

1%
~ %3 Fom™Eome1)- A2 po(y)=—Eldyl,—o, or

Comparison to Eq.2) yields the discrete boundary condition Po(y)=7y’ye Y (21
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With this understanding, the proper normalization conditionhowever, does not work: writing(x,t)=p,(t)/a, and let-

is ting a—0 while keeping only up to first-order terms &
yields
y
cs(y) j dy(2)dz+po(y) =cs(Y), (22) gc _d°c v (2D )
0 E—D(})—Xz‘*'ac— ?-i-v c-. (26)
which is indeed met. Thus, it is impossible to identifk, andk, in this manner,
and one is forced to work with the discrete equati@s).
IV. REACTION-DIFFUSION EQUATION [An approximate solution could be found by proceeding with

Eqg. (26) anyway, ignoring the fact that is supposed to be
So far, we have presented an exact solution to the prth(fqingtes)ima)lll\;/v s¥na?|] g PP

lem of diffusion-limited reversible coalescence with a trap.  \ye now use the exact solution of Sec. Il to attempt and
Exactly solvable models of diffusion-limited reactions, how- determinek, and k,. We note that without the birth and

ever, are rare. We now wish to discuss one of the moStyjescence reactions the particles would simply diffuse with
widely used approximation methods, in light of the exact, giffusion constanD—the sameD as in the hopping rate
results. . e . D/a? of the microscopic rules.

The method is that of reaction-diffusion equations. Here First consider the stationary solution of E@3), for an
one assumes the existence ofneesoscopidength scale infinite system without the trapce;=kK;/k,. To conform

within which the system is homogeneous and well mlxed,wi,[h the exact solution of Eq11), we must have
and where the reaction rates can be accounted for as in clas-

sical rate equations. At longer length scales, variations in the k, v
concentration¢(x,t), give rise to diffusion. In our case, the k. 2D" (27)
appropriate reaction-diffusion equation is 2

The stationary solution to Eq23) with the trap—the

ac(x,t 9%c o4 —i
(0 _ C kKo 23 boundary conditior{24)—is
” ” (x) 3 [k 1) 1
cs(X
. _ S~ tant?| \/=—=x+tanh ! \ﬁ) —-=, (28
wherek,; andk, represent the “effective” rates of birth and C, 2 3D 3/ 2

coalescence, respectively. The trap at the origin imposes the . ) ) L
boundary condition wherec..=c¢ is the concentration of particles infinitely far

away from the trap.
c(04)=0. (24) The concentration profile described by E@8) looks
' similar to the exact result of Eq17). One could now use
different criteria to further constraik, andk,. Demanding
the same asymptotic behavior far away from the trap;
Iimxﬂwln[l—cs(x)/ceq]/xz —v/2D, we get

An alternative approach is that of writing down an infinite
hierarchy of rate equations for timepoint density correlation
functions, and truncating the hierarchy with a Kirkwood an-
satz at some convenient stage. In the simplest case, one trun- 2
cates the hierarchy at the level of single-point density func- k1=§ U_'
tions. This is achieved by neglecting all correlations, and by 82D
expressing multiple-point density functions as products of ) ) )
single-point densities. In view of the peculiar IPDF in our On the other hand, if we require the same behavior close to
problem[Eq. (19)], this seems a promising approximation. the trap; ¢cs/dx)x—o=(v/2D)*, we get

Let the probability of having a particle at sitebe p,(t), 9 2
then the joint probability of having patrticles at batandm ki== U__
at timet may be approximated gsi2h(t)=~pn(t)pm(t). In 82D
this fashion, our model is described by the equation

(29

(30)

Clearly, it is impossible to fix the short range behavior and
p D the long range behavior simultaneously. Instead, one may
Pn v i

—L =2l 72t (1= pp)(pn-1tpui) 1+ 5 (1=py)  WTE 2

v
X(pn-17F Pn+1), (25) kl:aﬁv and k;=av, (32)

and the boundary conditiopo(t) =0. Notice that in the sta- wherea is a single fitting parameter of order unity. A least

tionary limit, and without the trap, Eq25) is exact since in - square fit in the range 9c.x<5 is achieved witha
the equilibrium state of the infinite system the particles really— 1 57,

are uncorrelated. Indeed, solving E&5) when dp,/dt=0

yields c=p/a=v/(2D +av), which agrees witfc, of Eq. V. DISCUSSION
(11) whena—D0. '
It is tempting to try and connect E(R5) to the reaction- We have solved the problem of diffusion-limited revers-

diffusion approach, by passing to the continuum limit. This,ible coalescence with a trap, in one dimension, exactly. The
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result is tantalizingly simple: the stationary concentrationthat the critical dimension id.=3 [20]. The present model
profile is exponential. Moreover, the distribution of distancescould present an advantage in future numerical studies, be-
between nearest particlgshe IPDF is also exponential, cause of its nontriviastationarystate.
similar to that of particles in arquilibrium process—the Future work will also include the investigation of two-
same process in the absence of the trap. This does not megjpint density correlation functions, as well as the influence
however, that the distribution of particles in the two cases isf a drift away from the trap. Both problems can be formu-
identical: it is just a peculiarity of the IPDF in this particular |ated rigorously within the framework of the IPDF method
model. To be sure, the distribution of particles in the equi{10]. Multiple-point density correlation functions would shed
librium situation is fully random and uncorrelated, whereasfyrther light on the breakdown of reaction-diffusion equa-
in the presence of the trap it is not! tions in low dimensions. Drift away from the trap could po-
We have also contrasted the exact solution with the altertentia”y give rise to an interesting phase transition: from a
native, traditional approach of reaction-diffusion equationsgystem with a nontrivial steady stateuch as in our case,
highlighting the fact that the latter is merely an approxima-when the drift is zerp to a system with only a trivial steady

tion method. Our model provides a clear example where thetate (the vacuun, as the drift increases beyond a critical
effective rates of the reaction-diffusion equation can be repoint.

lated to the microscopic rates of the underlying process,
without appealing to renormalization.
An_ intgrest.ing open guestion is at wh_at dime!’nsiqn ACKNOWLEDGMENTS
reaction-diffusion equations accurately describe the kinetics
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