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Diffusion-limited coalescence,A1A
A, with a trap

Daniel ben-Avraham*
Physics Department, and Clarkson Institute for Statistical Physics (CISP), Clarkson University, Potsdam, New York 13699-5

~Received 15 June 1998!

We study diffusion-limited coalescence,A1A
A, in one dimension, and derive an exact solution for the
steady state in the presence of a trap. Without the trap, the system arrives at anequilibrium state that satisfies
detailed balance, and can therefore be analyzed by classical equilibrium methods. The trap introduces an
irreversible element, and the stationary state is no longer an equilibrium state. The exact solution is compared
to that of a reaction-diffusion equation—the habitual approximation method of choice. The reaction-diffusion
equation can also be obtained exactly in this case, making the present model particularly useful.
@S1063-651X~98!12310-3#
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I. INTRODUCTION

Nonequilibrium kinetics of diffusion-limited reactions ha
been the subject of much recent interest@1–6#. In contrast to
equilibrium systems—which are best analyzed with stand
thermodynamics—or reaction-limited processes—whose
netics is well described by classical rate equations@7,8#—
there is no general approach to nonequilibrium, diffusio
limited reactions.

In this communication we study a diffusion-limited co
lescence process in one dimension:A1A
A, which can be
analyzedexactly@9–19#. When a trap is introduced, the re
sulting steady state is a nonequilibrium state. We derive
exact description of this state and compare it to the pre
tion from a reaction-diffusion equation—the standard a
proximation method of choice. The pertinent reactio
diffusion equation can too be solved exactly, making
model useful for the study of this popular approximati
method.

The rest of this paper is organized as follows. In Sec
we present a lattice model of diffusion-limited reversib
coalescence, along with the exact method of analysis;
method of empty intervals, also known as the method
interparticle distribution functions. The stationary state in
presence of a trap is derived and analyzed in Sec. III. In S
IV we compare the exact solution to that of a reactio
diffusion equation, and devise strategies to determine the
propriate rate coefficients. We conclude with a discuss
and open questions in Sec. V.

II. REVERSIBLE COALESCENCE

Our model@9,10# is defined on a one-dimensional lattic
of lattice spacinga. Each site is in one of two states: occ
pied by a particleA, or empty. Particles hop randomly int
nearest neighbor sites, at rateD/a2. A particle may give
birth to an additional particle, into a nearest neighbor site
ratev/2a ~on either side of the particle!. If hopping or birth
occurs into a site that is already occupied, the target
remains occupied. The last rule means that coalescencA
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1A→A, takes placeimmediatelyupon encounter of any two
particles. Thus, together with hopping and birth, the syst
models the diffusion-limited reaction processA1A
A.

An exact treatment of the problem is possible through
method of interparticle distribution functions~IPDF!. The
key concept is En,m(t)—the probability that sitesn,n
11, . . . ,m are empty at timet. The probability that siten is
occupied is

Prob~siten is occupied!512En,n . ~1!

The event that sitesn throughm are empty~probEn,m) con-
sists of two cases: sitem11 is also empty~prob.En,m11), or
it is occupied. Thus the probability that sitesn throughm are
empty, but sitem11 is occupied, isEn,m2En,m11 . With
this ~and with a similar rule for when the particle is to the le
of the empty segment! one can write down a rate equatio
for the evolution of the empty interval probabilities:

]En,m

]t
5

D

a2 ~En,m212En,m!2
D

a2 ~En,m2En,m11!

2
D

a2 ~En,m2En21,m!1
D

a2 ~En11,m2En,m!

2
v

2a
@~En,m2En,m11!1~En,m2En21,m!#. ~2!

Equation~2! is valid for m.n. The special case ofm5n
yields the boundary condition

En,n2151. ~3!

The fact that the$En,m% representprobabilities implies the
additional condition thatEn,m>0. Finally, if the system is
not empty thenEn,m→0 asn→2` andm→`.

In many applications, it is simpler to pass to the co
tinuum limit. We write x5na and y5ma, and replace
En,m(t) with E(x,y;t). Letting a→0, Eq. ~2! becomes

]E

]t
5DS ]2

]x21
]2

]y2DE2
v
2S ]E

]x
2

]E

]y D , ~4!
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with the boundary conditions,

E~x,x;t !51, ~5!

E~x,y;t !>0, ~6!

lim
x→2`
y→1`

E~x,y;t !50. ~7!

The concentration of particles is obtained using Eqs.~1!
and ~3!, and passing to the continuum limit:

c~x,t !52
]E~x,y;t !

]y U
y5x

. ~8!

It can also be shown@9,10# that the conditional joint prob-
ability for having particles atx andy but none in between, is

P~x,y;t !52
]2E~x,y;t !

]x]y
. ~9!

Given a particle atx, the probability that the next neare
particle is aty, i.e., the IPDF, isp(x,y;t)5(1/c)P.

III. STEADY STATE WITH A TRAP

The steady state of Eq.~4!, with the boundary conditions
~5!–~7!, when]E/]t50, is

Eeq5e2~v/2D !~y2x!. ~10!

This corresponds to the equilibrium concentration of p
ticles @using Eq.~8!#

ceq5
v

2D
[g. ~11!

Another trivial solution isE(x,y)51; it represents a totally
empty system. But the solution~10! is stable, while the
vacuum state is not. In fact, when the initial state of t
system is a mixture of the two phases,c(x,t50)50 for x
,0 andc(x,t50)5ceq for x.0, say, then the stable phas
invades the unstable phase. The front between the
phases propagates at a constant speed, similar to the ca
Fisher waves@20#. Here we wish to study another inhomo
geneous situation, where there is a perfectly absorbing tra
the origin instead of the initial empty half-space. The tr
depletes its immediate neighborhood, but a nontrivial ste
state is expected as the depletion zone created by the tr
continually replenished by a stream of particles from
stable phase.

To derive the appropriate boundary condition, we tu
back to the discrete representation. In the presence of a
fect trap atn50, Eq. ~2! is then limited to 0,n,m. The
special equation forn50 is

]E0,m

]t
5

D

a2 ~E0,m211E0,m111E1,m23E0,m!

2
v

2a
~E0,m2E0,m11!. ~12!

Comparison to Eq.~2! yields the discrete boundary conditio
-

o
e of

at

y
is

e

er-

E21,m5E0,m , ~13!

which in the continuum limit becomes

]E~x,y;t !

]x U
x50

50. ~14!

In addition, the boundary condition~7! is now replaced by

lim
y→`

E~0,y;t !50. ~15!

The stationary solution to Eq.~4!, confined to the wedge
(0<x<y), which satisfies the boundary conditions~5!, ~6!,
~14!, and~15!, is

Es~x,y!5e2g~y2x!1g~y2x!e2gy. ~16!

Far away from the trap, asx,y→`, this converges to the
equilibrium result of Eq.~10!. From Eq.~8!, we obtain the
stationary concentration profile:

cs~x!5g~12e2gx!. ~17!

As expected, there is a depletion zone of size 1/g52D/v
near the trap, and the concentration grows asymptoticall
ceq asx→`.

The IPDF between nearest particles is surprising. Fr
Eqs.~9! and ~16! we obtain the conditional joint probability

Ps~x,y!5g2e2gy~egx21!. ~18!

Dividing Ps(x,y) by cs(x) yields the ‘‘forward’’ IPDF—the
probability that given a particle atx the next nearest particle
to its right is at y:

ps~z!5ge2gz, z[y2x. ~19!

The notation chosen here emphasizes the unexpected r
that ps is translationally invariant. What is more, this Poi
sonian IPDF is characteristic of particles atequilibrium,
when there are no correlations between their various p
tions. Indeed, exactly the same IPDF is obtained for the e
librium state of Eq.~10!, without the trap.

To obtain the ‘‘backward’’ IPDF—the probability tha
given a particle aty the next nearest particleto its left is at a
distancez—we dividePs(x,y) by cs(y):

qy~z!5g
e2gz2e2gy

12e2gy
. ~20!

The fact thatqy(z) is not translationally invariant comes a
no surprise, because of the trap atx50. However,qy(z)
does not normalize properly. The reason for that is that th
is a finite chance that there are no particles between the
ticle at y and the trap, i.e., the particle aty is the nearest
particle to the trap. The probability that this happens
p0(y)52]E/]yux50 , or

p0~y!5g2ye2gy ~21!
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With this understanding, the proper normalization condit
is

cs~y!E
0

y

qy~z!dz1p0~y!5cs~y!, ~22!

which is indeed met.

IV. REACTION-DIFFUSION EQUATION

So far, we have presented an exact solution to the p
lem of diffusion-limited reversible coalescence with a tra
Exactly solvable models of diffusion-limited reactions, ho
ever, are rare. We now wish to discuss one of the m
widely used approximation methods, in light of the exa
results.

The method is that of reaction-diffusion equations. He
one assumes the existence of amesoscopiclength scale
within which the system is homogeneous and well mix
and where the reaction rates can be accounted for as in
sical rate equations. At longer length scales, variations in
concentration,c(x,t), give rise to diffusion. In our case, th
appropriate reaction-diffusion equation is

]c~x,t !

]t
5D

]2c

]x2 1k1c2k2c2, ~23!

wherek1 andk2 represent the ‘‘effective’’ rates of birth an
coalescence, respectively. The trap at the origin imposes
boundary condition

c~0,t !50. ~24!

An alternative approach is that of writing down an infini
hierarchy of rate equations for then-point density correlation
functions, and truncating the hierarchy with a Kirkwood a
satz at some convenient stage. In the simplest case, one
cates the hierarchy at the level of single-point density fu
tions. This is achieved by neglecting all correlations, and
expressing multiple-point density functions as products
single-point densities. In view of the peculiar IPDF in o
problem@Eq. ~19!#, this seems a promising approximation

Let the probability of having a particle at siten be rn(t),
then the joint probability of having particles at bothn andm
at time t may be approximated asrn,m

(2) (t)'rn(t)rm(t). In
this fashion, our model is described by the equation

]rn

]t
5

D

a2 @22rn1~12rn!~rn211rn11!#1
v

2a
~12rn!

3~rn211rn11!, ~25!

and the boundary conditionr0(t)50. Notice that in the sta-
tionary limit, and without the trap, Eq.~25! is exact, since in
the equilibrium state of the infinite system the particles rea
are uncorrelated. Indeed, solving Eq.~25! when ]rn /]t50
yields c5r/a5v/(2D1av), which agrees withceq of Eq.
~11! whena→0.

It is tempting to try and connect Eq.~25! to the reaction-
diffusion approach, by passing to the continuum limit. Th
n
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however, does not work: writingc(x,t)5rn(t)/a, and let-
ting a→0 while keeping only up to first-order terms ina,
yields

]c

]t
5D

]2c

]x21
v
a

c2S 2D

a
1v D c2. ~26!

Thus, it is impossible to identifyk1 and k2 in this manner,
and one is forced to work with the discrete equation~25!.
@An approximate solution could be found by proceeding w
Eq. ~26! anyway, ignoring the fact thata is supposed to be
infinitesimally small.#

We now use the exact solution of Sec. III to attempt a
determinek1 and k2 . We note that without the birth and
coalescence reactions the particles would simply diffuse w
a diffusion constantD—the sameD as in the hopping rate
D/a2 of the microscopic rules.

First consider the stationary solution of Eq.~23!, for an
infinite system without the trap:ceq5k1 /k2 . To conform
with the exact solution of Eq.~11!, we must have

k1

k2
5

v
2D

. ~27!

The stationary solution to Eq.~23! with the trap—the
boundary condition~24!—is

cs~x!

c`
5

3

2
tanh2SA k1

3D
x1tanh21A1

3D 2
1

2
, ~28!

wherec`5ceq is the concentration of particles infinitely fa
away from the trap.

The concentration profile described by Eq.~28! looks
similar to the exact result of Eq.~17!. One could now use
different criteria to further constraink1 andk2 . Demanding
the same asymptotic behavior far away from the tr
lim

x→`
ln@12cs(x)/ceq#/x52v/2D, we get

k15
3

8

v2

2D
. ~29!

On the other hand, if we require the same behavior clos
the trap; (]cs /]x)x505(v/2D)2, we get

k15
9

8

v2

2D
. ~30!

Clearly, it is impossible to fix the short range behavior a
the long range behavior simultaneously. Instead, one m
write

k15a
v2

2D
, and k25av, ~31!

wherea is a single fitting parameter of order unity. A lea
square fit in the range 0<ceqx<5 is achieved witha
51.27.

V. DISCUSSION

We have solved the problem of diffusion-limited rever
ible coalescence with a trap, in one dimension, exactly. T
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result is tantalizingly simple: the stationary concentrat
profile is exponential. Moreover, the distribution of distanc
between nearest particles~the IPDF! is also exponential,
similar to that of particles in anequilibrium process—the
same process in the absence of the trap. This does not m
however, that the distribution of particles in the two case
identical: it is just a peculiarity of the IPDF in this particula
model. To be sure, the distribution of particles in the eq
librium situation is fully random and uncorrelated, where
in the presence of the trap it is not!

We have also contrasted the exact solution with the al
native, traditional approach of reaction-diffusion equatio
highlighting the fact that the latter is merely an approxim
tion method. Our model provides a clear example where
effective rates of the reaction-diffusion equation can be
lated to the microscopic rates of the underlying proce
without appealing to renormalization.

An interesting open question is at what dimensi
reaction-diffusion equations accurately describe the kine
of the system. Previously, we had conducted numerical s
ies of Fisher waves in the coalescence process, sugge
nd
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that the critical dimension isdc53 @20#. The present mode
could present an advantage in future numerical studies,
cause of its nontrivialstationarystate.

Future work will also include the investigation of two
point density correlation functions, as well as the influen
of a drift away from the trap. Both problems can be form
lated rigorously within the framework of the IPDF metho
@10#. Multiple-point density correlation functions would she
further light on the breakdown of reaction-diffusion equ
tions in low dimensions. Drift away from the trap could p
tentially give rise to an interesting phase transition: from
system with a nontrivial steady state~such as in our case
when the drift is zero!, to a system with only a trivial stead
state~the vacuum!, as the drift increases beyond a critic
point.
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